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1. Introduction and Summary

As is well known in the case of the simple or two-dimensional lattice
designs, besides the two replications provided by taking the blocks
along the rows and the columns of the scheme, additional replications
may be generated by the superimposition of a system of orthogonal
Latin squares. The object of the present paper is to extend this basic
idea to designs in three dimensions, and to generate additional repli
cations of the 3-dimensional or cubic lattice designs by superimposing
Latin cubes of the second order as defined earlier by Kishen (1942,
1949) on the original lattice scheme.

Using the properties of Galois fiields and finite geometries, Kishen
(1949) gave a general method for constructing the i'-sided, 7M-fold or
sxsxs... (to m factors) Latin hypercubes of the r-th order, where
^^ p being a prime positive integer and n any positive integer,

t The present paper gives a new general method for constructing the
3-fold ovkxkxk Latin cubes of the second order of any side k whether
prime or non-prime. A simple extension of this method leads to the
construction of the 4-fold or, in general, the /n-fold Latin hypercubes
of the second order.

The analysis for /c® varieties or treatments in k^ blocks of k plots
each i.e., for the (/c®, it^) design, also known as a three-dimensional
or cubic lattice, has been given for three replicates by Yates (1939);
here k may be any of the integers 2, 3, 4, 5, 6, etc. In addition, he
indicated the appropriate method of analysis for multiples of 3 repli
cates. Federer(1949), using the theoryfor primepower designs developed
earlier byKempthorne and Federer (1948), illustrated with a numerical
example the analysis for\p® varieties, where j? is a prime number, in
incomplete blocks ofp varieties for more than 3 replicates. The com
putational procedures given by him use the pseudo- or quasi-factorial
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approach and are applicable for p = 2, 3, 5, 7, 11, etc., and for 4, 5,
etc., replicates.

The present paper proves certain general properties of the Latin
cubes of tile second order in relation to partially balanced incomplete
block designs. , Following the general method of analysis for such
designs as given by Bose and Nair (1939) and Rao (1947),. the paper
also -develops a general solution for the cubic lattice designs with P
treatments and four replications arranged in blocks of k plots, where
k is any integer and the fourth replication is generated by using suitable
Latin cubes of the second order. i The results are in perfect agreement
with the theory as presented by Kempthorne (1952) in'case k happens
to be a prime number or its power. Finally, since orthogonal Latin
cubes of the second order cannot be defined in three dimensions, the
case of five or more replications is not amenable to this treatment.
In the end, the results have been illustrated by re-working out Federer's)
numerical example with the methods presented in this paper.

2. Definitions and Notation

For the sake of completeness, the definition of an j-sided, ;?j-fold
Latin hypercube of the r-th order as given by Kishen (1949) is being
reproduced here.

Definition.—An j-sided, /Ji-fold or sxsxs... {io m factors) Latin
hypercube of the /--th order may be defined as an wj-fold hypercube
arrangement of s' letters, each repeated s^'~' times, such that each letter
occurs exactly times in each of its m sets of s, (m — l)-flats parallel
to the in co-ordinate {in — l)-ilats.

With m = 3 and ;• = 2 we arrive at the definition of a Latin cube

of the second order as a cube arrangement of s- letters, each repeated
s times, such that each letter occurs exactly once in each of its 3 sets
of s planes parallel to the 3 co-ordinate planes.

For the partially balanced incomplete block, i.e., P.B.I.B. designs
with V varieties arranged in b blocks of k plots, each variety being
replicated r times, we shall use the usual notation as given by Bose
and Nair (1939) and Nair and Rao (1942). For a design with t asso
ciate classes, the first system of parameters will be denoted by

V, b, r, k; n^, n^, ..., nt and Aj, Ag, ... A,;

and the second system of parameters by the matrices

where a, P, y range from 1, 2, t.
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For the analysis of these designs we shall use the method of Rao
(1947) given later on in detail.

3. General Method of Construction of Latin Cubes of the Second

Order of any Stde k

We shall illustrate the general method with the help of an example
for the 3x3x3 Latin cubes of the second order. We require a cube
arrangement of 3^ letters, each repeated three times, so that each letter
occurs exactly once in each of the 3 sets of three planes parallel to a
co-ordinate plane.

Let the 3^ letters be denoted by; 0, 1,2, 3, 4, 5, 6, 7, 8. Divide
them into 3 arbitrary groups containing 3 letters each. Let these
groups be denoted by gi, g^, g^, e.g.,

gi-.{0,3,6), ^2:0,4,7), g,:{l,5,^). (1)

Arrange the three groups gi, ga. gs the form of a Latin square, say:

gl g2 gs

gi gs gi (2)

ga gi gi

Replacing gi in (2) by the appropriate group of letters from (1), we
arrive at the following scheme:

/(0.3.6) (1.4.7) (2.5.8)'
^,33= (1.4.7) (2.5.8) (0.3.6)}. (3)

((2.5.8) (0.3.6) (i.4.7)
The scheme 5*123 i" (3) rn^y be called the generating scheme of the

3x3x3 Latin cubes of the second order. The different horizontal

sections or layers of the cube are derived from in succession. To
obtain the first layer its first row is written down by selecting an
arbitrary number from each of the three groups in the first row of the
scheme '̂123, e.g..

Row 1 of Li: 0 4 8 say.

Next, delete the three numbers 0, 4, 8 selected above, from all the
groups in the rest of the scheme, wherever they occur, arriving at the
following arrangement for constructing L-^\
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0 4

j(1.7) (2.5) (3.6)}. (4)
((2.5) (3.6) (1.7)

The second row of is now obtained by selecting an arbitrary number
from each group in the second row of scheme (4), e.g.,

Row 2 of Lx: 1 5 6 say.

Deleting 1, 5, 6 from each group in the last row of (4), the third
row of £1 is determined completely as:

Row 3 of Lj: 2 3 7.

Hence the first layer of the Latin cube becomes;

0 4

W.{\ 5 6). (5)
3 7

Next, delete each letter of L-^ in (5) from the group in the correspond
ing position of in (3). This gives the following residual scheme
for generating the second and third layers of the Latin cube:

(3.6) (1.7) (2.5)

5^3 ^ j(4.7) (2.8) (0.3)} . (6)
(5.8) (0.6) (1.4)

To generate L^, the second layer of the Latin cube, the procedure
outlined above for generating is repeated exactly. The first row
of L2 is chosen arbitrarily from the first row of the scheme 82^, e.g..

Row 1 of £2: 3 7 2 say.

Deleting 3, 1, 2 from the remainder of the scheme leads to

3 7 2

4 8 0 }. (7)

((5.8) (0.6) (1.4)
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Since the second row of is also now fixed in (7) as 4 8 0, the
last row of is clearly formed from the remaining numbers as 5 6 1.
Hence the second layer of the Latin cube is found to be:

2

0

1

(8)

Deleting each letter of in (8) from the corresponding cells of S23
in (6), we are left with the last layer L3 of the Latin cube as follows:

S« or Lo\

6

7

1 5

2 3

0 4

(9)

From (5), (8) and (9) the complete 3x3x3 Latin cube of the
second order may conveniently be represented diagrammatically by
writing down the three layers L^, L^, side by side as follows:

b L,

0 4 8 3 1 2 6 1

1 5 6 4 8 0 7 2

2 3 7 5 6 1 8 0

5

3

4

(10)

It will be noticed that the Latin cube in (10) is identical with that
given by Kjshen (1949) in Table II of his paper. It is also evident
that due to the arbitrary elements in the steps given above, (10) gives
only one of the possible Latin cubes of the second order which can
be generated from the scheme '̂123 in (3) which is itself arbitrary. As
an example, we give below another Latin cube of the second order
generated from the same scheme:

L,

0 4 5

7 8 3

2 6 1

L3

1 .8 6 7 2'

2 6 1 5
0

0 7 8 3 4

(11)

The method outlined above is completely general and can be used
to generate kxkxk Latin cubes of the second order of any side k
where A: is a prime or non-prime. The arrangement consists of k^
letters each repeated k times, so that each letter occurs exactly once
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in each of the 3 sets of k planes parallel to a co-ordinate plane. The
letters are first divided into k arbitrary groups

S\' S2! >Sh

each containing k letters. The groups 'gj' are then arranged in the
form of a A:x/c Latin square. This gives a generating scheme
for the kxkxk Latin cubes of the second order. The first layer
Li is generated by selecting an arbitrary first row from the first row
of S'l, 2, ... k, deleting its elements from all the remaining groups,
then forming an arbitrary second row from the second row of the
resultant scheme, and so on exactly as outlined above. The elements
of Li are next deleted from S-^, 2, ... to obtain the residual scheme

^21 a, ••• k> and the layers L^, are successively generated in a
similar manner until finally we reach when Lj^ is automatically
determined. Further examples of Latin cubes of the second order
generated in this manner will be given in the subsequent sections.

It should also be pointed out that a simple repetition of the scheme
(10) three times, one below the other, leads to the 3x3x3x3 or 4-
fold Latin hypercube of the second order as given by Kishen (1949)
in Table IX of his paper. An alternative is to arrange the layers
L2, 1.3 in the form of a 3 x 3 Latin square in order to generate the 4-
fold hypercube. The devices clearly apply to Latin cubes of the second
order of any side k. The extension to higher dimensions may simply
be derived by repetition of the schemes along the respective directions
of the co-ordinate axes.

4. Latin Cubes of the Second Order in Relation to the Systems
OF Confounding in the (s^, s^) Design, where j = p"

We may designate the varieties in the design by the symbols
(XiX2 X3) where the quantities Xj_, Xj, X3 can each take any one of the
values 0, 1, 2, ..., 5 —1, corresponding to the elements ao = 0, a, = 1,
a2 = X, ..., = x'"^ of the Galois field GF{s) o^ s = p" elements
where p is a prime number and n any positive integer.

Now, let the numbers 0, 1, 2, ..., (j — 1) be written in order by
proceeding systematically along each of the three co-ordinate axes
OZi, 0X2, 0X3. Then the sets (xj Xj Xg) represent the co-ordinates
of the points in a three-dimensional lattice. The point (xi Xg X3)
may be spoken of as the cell (xj x^ Xg) of the three-dimensional {sxsxs)-
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cube arrangement, and the j different layers of the cube are given by
the equations ^3 = 0, 1, 2,..., (j —1).

Finally we may take x-i, Xg, Xg as representing the s levels of three
quasi-factors a, b, c respectively. It is then evident that the varieties,
lattice points or cells of the cube are in (1, 1) correspondence with the
5®-treatment combinations of a quasi-factorial system. Hence, in
accordance with the general theory of confounding, the sets of {s — 1)
degrees of freedom belonging to the main effects and interactions of
the quasi-factors are obtained by the contrasts of the s sets of treat
ment combinations satisfying equations of the following type in GF{s)
as given in Table I.

Table I

Nature of effects and corresponding equations in confounded designs
involving three factors

Effect or Interaction Equations

A •• a^,= a( (<=0, 1, 2, . . ., J—1)

1,2, ...,5-1) • • + = (?=0, 1,2,.. .,5—1)

AB'C'{i,J=\,2, ...,s-]) • • + (^=0,
1,2, ...,5-1)

The notation simplifies when s = p, a prime number; for, in this
case Xi, Xa, Xg are the actual elements 0, 1, 2, —1 of the Galois
field GF{p), and the equations in Table I may be written in the form:

= t

Xi + /Xj = t

Xj^ + /Xj +7X3 = /,(/ = 0, 1, 2, ..p 1)

(12)

remembering that all operations have now to be performed mod. (p).
We will also use the two following well-known results:

(a) The (5®, J^) design has only two independent generators, i.e.,
we can confound any two arbitrary sets of (5 —1)d.f., given by any
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two sets of equations chosen from Table I. If these confounded effects
are denoted by X and Y, then the effects:

xr, (i3)

representing their generalised interaction are also confounded.

(3) The total number of possible systems of confounding for an
(5^ experiment in blocks of size j is equal to:

= + ^ + 04)

It is now of interest to see the relationship of the different possible
systems of confounding to the Latin cubes of the second order. As
a simple example, we will first consider the case of the 3® lattice design
in blocks of 3 plots. It is well known that Yates' 3 replications of
the cubic lattice—for any side—are simply generated by taking the
blocks along the rows, columns and verticals of the lattice scheme,
and that these correspond to the following systems of confounding:

Replicate Effects confounded

I .. A, B, AB, AB''

n ..A, C, AC, AC (15)
III .. B, C, BC, BC^

These replicates have been designated as Z, Yand X respectively
by Yates. Suppose that in the fourth replication, as in Federer's
(1949) example, we wish to adopt the following confounding:

Replicate IV: AB\ BC, AC, ABC^. (ig)

Now any two of the effects given in (16) may be taken as the
generators of the design. We thus have to solve the following two
sets of three equations in GF (3) to obtain the blocks of the design:

+ 2^2 = 0, 1,2 "I
X2 + X3=0, l,2j

corresponding to AB^ and BC as generators. The solutions of (17)
corresponding to the nine combinations on the right-hand side readily
give the following nine blocks of 3 varieties each for the fourth replica
tion of the 3® lattice:
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Block No. Varieties

(1) (000,112,221) •

(2) (010,122,201)

(3) (020,102,211)

(4) (100,212,021)

(5) (110,222,001)

(6) (120,202,011)

(7) (200,012,121)

(8) (210,022,101)

(9) (220,002,111)

(18)

The 3® varieties corresponding to the 3^ cells of the lattice may now
be written in the following scheme, where as before, the layers corres
ponding to X3 = 0, 1, and 2 are given side by side for convenience;

X3 = 0

020 120 220

010 110 210

000 100 200

X3 = 1

021 121 221

Oil 111 211

001 101 201

• (19)

The blocks may be numbered serially in any manner from 1,2, ...,
9. If now in scheme (19) we write the number T in the three positions
corresponding to the three varieties occurring in the /-th block (/ = 1,
2,..., 9), we generate the following scheme:

3 6 9

2 5 8

1 4 7

L2

4 V 1

6 9 3

5 8 2

Lz

8 2 5

7 1 4

9 3 6

(20)

It is evident that the scheme (20) thus obtained is a 3X3x 3 Latin cube
of the second order.

The procedure described above for 3® varieties is quite general
and may be followed without change for i'' varieties. In the general
case, we may select any two effects, each representing (5 - 1) d.f., out
of the {s + 1) effects confounded in the fourth replication, as the
generators of the design. The two sets of J equations in
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in GF(s) for these two effects are written down with their right-hand
sides as ao, ..., The j solutions to these pairs of equations
for each of the combinations of the right-hand sides generate the

blocks of the design, which may be numbered serially as 1,2, .. .,s^
in any order. In the j cells Xa Xg) of an jxjXj cubic lattice corres
ponding to the j varieties occurring in the ;-th block{i= 1,2, ..., s^),
the number T is written, leading to the generation of an sxsxs
Latin cube of the second order. The process, however, breaks down
if a main effect is included among the confounded effects.

It will be readily recognised that the above procedure is identical
with the general result proved by Kishen (1949) for generating the
771-fold Latin hypercubes of the second order, for the particular case

•772 = 3. In general, starting with two equations in o,,^, a,^,
and right-hand sides and in GF(s), a number corresponding
to the pair Q is written in each of the cells x^, ..., x,„) of
the hypercube whose co-ordinates satisfy this pair of equations. The
numbers 0, 1, 2, ..., — 1) are attached to the pairs ^3) in any
convenient manner. It is, however, essential that the following con
dition must be satisfied in order that the process may generate Latin
cubes (or hypercubes) of the second order. The coefficients of at least
two of the a^^ on the left-hand side of each of the two equations must
be non-zero (Kishen, 1949). Using this result it will be seen that,
in order to be able to generate Latin cubes of the second order by the
method described above, no main effect should be included among
the effects confounded in the fourth replication of the designs under
consideration.

We shall now analyse in some more detail the (^^ + j + 1) possi
bilities of confounding in the lattice designs in blocks of s plots
(c/., Bose and Kishen, 1940; Bose, 1947; and Kempthorne, 1952).
The (i''̂ + 5+1) cases may be easily classified into the three types
as given in Table II.

The subdivision of the possible types of confounding given in
Table II corresponds in essence to that given by Bose and Kishen
(1940) in Table IV on the basis of the geometrical theory of confound
ing. It will now be seen that the 3 possibihties of confounding of
Type I correspond to the 3 basic replications of the cubic lattice designs
where the blocks are formed by taking all varieties lying along the rows,
columns and verticals of a 3-dimensional cube. The 3 (i —1) possi
bilities of confounding of Type II involve the confounding of a main
effect and hence, in virtue of the result quoted above, are not suitable
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for a fourth replication, as these will not lead to Latin cubes of the
second order. The {s — 1)^ possibilities of confounding of Type III
are all that we are left with to generate the fourth replication of the
cubic lattice designs leading to the construction of sxsxs Latin
cubes of the second order.

Table II

Nature of confounding in the (j®, s^) designs

Type Effects confounded

A, B, AB, AB\ AB'-^

A, C, AC, AC AO-^

B, C, BC, BC\ ...,

Number
of

cases

II A, BC\ with products giving the generalised {s-•1)
interactions (/ = 1, 2, ..., j — 1)

B, AC\ with products (i = 1,2, ..., 5 — 1) (.s--1)

C, AB', with products (/ = 1, 2, ..^ — 1) (s--1)

III AB\ B0, with products, (/, j = 1, 2, ..., 5 — 1) {s— 1)^

Total .. (5^+5+1)

We shall conclude the section with the following remarks which
may be easily verified:—

(0 The confounding in Type III in Table II may alternatively be
represented by the symbols:

AB'', AC'', with products. (/, ^ = 1, 2, ..j — 1) (21)

(ii) Among the (^ + 1) effects confounded with any particular
system of Type III, 3 effects belong one each to the first order inter
actions AB, BC, AC and (s — 2) effects belong to the second order
interaction ABC.

We shall now prove certain further general properties of the Latin
cubes of the second order generated by these confounded designs in
the next section.
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5. Some General Properties of Latin Cubes of the Second Order
Generated by the {s^, s^) Lattice Designs

We have seen in the previous section that out of the possible
+ 5 + 1) systems of confounding, only {s —1)^ systems belonging to

Type III lead to the construction of Latin cubes of the second order.
These systems, taking AB' and BC' as generators, are characterised
by the following two sets of equations:

".Ti + (^1 = 0) 2, ..., 5 1)

I
"o + = "(2 3

aj + aja„ = ) aj -f

{s — 1) I

a-s-i + ) "«-l + — "(a

(22)
"t~ (^2 ~ S 1) i, j =7^ OJ

For any one system of confounding, the subscripts i and j in (22)
are fixed and non-zero, and if they are allowed to range from 1,2, ...,
^ —1, all the (5 —1)^ systems of confounding belonging to Type III
are generated. We shall now prove four important properties satisfied
by Latin cubes of the second order generated by the equations (22).

Theorem 1.—In a given Latin cube of the second order of side
s = p", p being a prime number, the row {or column) contents in each
layer of the cube (i.e., in all planes Xg = constant) are identical. The
sets constituting the rows {or columns) as well as the numbers within
a set are, however, arranged in a dijferent order in the dijferent layers.

We shall prove the result for the row contents in any two layers
of the Latin cube. The result for columns may be established in a
similar manner by considering the system of equations appropriate
to the confounding of effects in the form (21).

Consider any two layers and L„ of the Latin cube given by
Xg = u and = v, where u, v are any two numbers out of 0, 1,2, ...,
(^ —1). The J rows in these layers are generated by successively
putting Xg = 0, 1, 2, ..., J — 1. Hence we get the following s pairs
of equations for determining the row contents in the two layers:

Row No. Layer L„ Layer

0 -f a^ao =

ao + aya„ =

1 + a^ai = l = a,,
• (23)



112 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

In the above equations the numbers i, j, u, v are all fixed. By
giving Xi the s values 0, 1, 2, ..., 5' — 1 in any pair of equations, the
pairs (ii, ig) are determined and hence the s numbers in this row become
known. Now, let

(a,a,,) — (aya„) = a^, Say.

We then have

ax + ajiu = o.,a„ + a, + ax (A = 0, 1, 2, . . ., J — 1) (24)

Since added to all the j elements of the Galois field generates
the same s elements in some different order, the relation (24) becomes:

ax + (aj-a,,) = (a^a^) + a^, (A ^ f.i). (25)

It then follows from (23) and (25) that the equation determining
the number in any row of L„ is identical with the equation deter
mining in some different row of I„. In this manner each row in
£„ corresponds to some other unique row of and vice-versa through
a common number 'fg'- Now consider any two such rows corres
ponding to different values of Xg, say Xg = p and X2 = q where p ^ q,
one from L„ and one from L„, which give the same value for '/g'.
The equations giving the values of for these two rows may then
be written as follows:

p-ih row of L„: + a-io-p = (26)

q-ih row of L„; + ajo, = (27)

It is now evident from the properties of the Galois field that on letting
^ 0, 1, 2, ..., s - 1, the number in each of the equations (26)

and (27) ranges through all the values 0, 1, 2, ..., 5—1. Since the
number is fixed and common to both these rows it follows that
the contents of the />-th row of and the g-th row of correspond
to the same set of pairs Q and hence are identical. Since q,
it also follows from (26) and (27) that the same value of must corres
pond to different values ofXj. Hence a given number in the two rows
must occur in a different column, i.e., in a different position. This
proves that the rows in any two layers of a Latin cube generated by
(22) are identical, the corresponding rows occupying a different position
in the layer, and the corresponding numbers in these rows occurring
in a different order. Hence the, theorem-
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The following two corollaries may easily be proved in the same
manner:

Corollary 1.—The row content is the same in all the (j — 1)^ Latin
cubes of the second order generated by (22).

Corollary 2.—The column content is the same in all the {s —1)
Latin cubes of the second order, corresponding to a fixed value of i and
generated by (22).

Theorem 2.—Among the (s — 1) Latin cubes of the second order
generated by confounding the effects AB', BO' (i = fixed, j = 1, 2, ...,
s — 1), the first layer (xg = 0) is identical. Jhe other layers are also
identical but they are only arranged in a different order.

Consider any two Latin cubes of the second order corresponding
to the confounding of the effects:

{a) AB\ BC^^, and generalised interactions,

(b) AB*, BC^', and generalised interactions,

where = one of the numbers 1, 2, ..., j — 1.

The equations to the different layers of the Latin cubes {a) and
{b) may then be written as follows:

Layer No.

Latin cube {a)

Latin cube {b)

+ o-ia = at

+ o.j

It will be noticed that the equations for the first layer io are iden
tical for the two Latin cubes. In the remaining layers L^, ...,

the 'ii' equation is identical throughout. For the '/j' equation,
it may be noted that in the two sets of products:

(0 oy^aa, . . .,

(ii) aja^, . . .,

each set. gives all the non-zero elements of the Galois field but in a
different order. Hence the Vj' equation for any layer of the Latin
cube {a) is identical with the equation of some other layer of the

8
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Latin cube {b). It follows that the pair of equations for any layer of
Laitin cube {a) is identical with the pair of equations of some other
layer of Latin cube {b). Thus a selected pair of values of (xj, leads
to the same values of i.e., the same number out of 0, 1,2, ..

— 1 occurs in the same position in these two layers belonging to
the respective Latin cubes of the second order. Hence the theorem.
It may be remarked that a rearrangement of the layers corresponds
to a change in the name of the levels of the factor 'c'.

Theorem 3.—Among the (s — 1) Latin cubes of the second order
generated by confounding the effects AB^ (i = fixed, k = 1, 2,

^ s _ 1)^ one, corresponding to the case k = \, is invariant under
. the transformation (xaXg). The remaining (s —2) Latin cubes of this
set, on application of the transformation (XzX,), become identical with
a Latin cube belonging to each one of the (s —2) sets corresponding
to the confounding of AB', AC^ (j 7^; i = 1, 2, ..., s —1; k = 1,
2, ..., s —1), so that the same sets of effects are confounded in them.

For convenience in writing let us fix /= 1, so that j = 2, 3, ...,
j—1. Equations of sets of (5 —1) Latin cubes corresponding to
systems of confounding for these values of i and j may then be written
as follows;

Set i = 1 Set; = 2 ... Set _/ = .s — 1

a-x^ + = a,^ ") )
= a,, 3

(/t= 1,2, ...,5- 1) (^ = 1, 2, . . ^ - 1) (^= 1,2, J- 1)

(Ci,) (Qfc) (C,_i.,)

The Latin cubes belonging to these sets may be systematically numbered
as Ciifc, Csfc, ..., Cu-i).ft where k ranges from 1, 2, ... j - 1. It is
now evident from the equations written above that the first Latin cube
Cit of the first set is invariant under the transformation (x^xg). Apply
ing the transformation (xaxg) to the remaining —2) Latin cubes
of the first set, the following equivalences are immediately apparent:

Ci2 — ^21' ^13 ~ ^31) • ••; ^l.(s-l) = Qs-ll.l (28)

In other words, the 2nd, 3rd, ..., (5 — l)-th Latin cubes of the first set
become identical with the first Latin cube (corresponding to ^ = 1)
of the 2nd set, 3rd set, ..., — I)-th set respectively. Hence the
theorem.
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The interchange of the letters Xa and is equivalent to the inter
change of the factors b and c. Hence, in the Latin cubes shown to
be equivalent above, the d.f., confounded in one are identical with
those confounded in the other on application of the transformation
{BC).

Theorem A.—The (s — 1) Latin cubes of the second order corres
ponding to the confounding of AB% BO (j = fixed, i = 1, 2,
s — 1) have the same first row plane, i.e., the first rows in all the corres
ponding layers are identical.

The result is immediately apparent on putting Xa = 0 in the equa
tions (22), when these become

= "-h 1(^1, = ], 2, ..., 1) J . . (29)

The equations (29) do not involve and a, is fixed. Hence this row
plane is the same in all the Latin cubes corresponding to the different
values of i=l, 2, ..., 1.

Illustration.—As a simple illustration of the properties proved
in the four theorems above consider the 3^ lattice in blocks of 3 plots
where there are only (3 — 1)^ = 4 systems of confounding which lead
to Latin cubes of the second order. These are as follows:

(1) AB, BC\ AC, AB^C

(2) AB, BC, AC\ AB^C

(3) AB^ BC, AC, ABC^

{A) AB\ BC\ AC\ ABC

Adopting the identification:

Pair(?i,/a) •• (00) (01) (02) (10) (11) (12) (20) (21) (22)

No. attached ..1 2 3 4 5 6 7 8 9,

the four Latin cubes of the second order, say C^, Cia, C^i, C^^ res
pectively, are obtained as follows: ' - .
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Lx ^3

Cii .. 9 3 6 8 2 5 7 1 4

5 8 2 4 7 1 6 9 3

- 1 4 7 3 6 9 2 5 8

Qa .. 9 3 6 7 1. 4 8 2 5

.. • - 5 8 2 6 9 3 4 7 1

1 4 7 2 5 8 3 6 9

Ql .. 6 9 3 4 7 1 5 8 2

8 2 5 9 3 6 7 1 4

1 4 7 2 5 8 3 6 9

C22 .. 6 9 3 5 8 2 4 7 1

8 2 5 7 1 4 9 3 6

1 4 7 3, 6 9 2 5 8

It will be noted that the row contents in any layer of any Latin
cube are constant. The column contents are also constant in the sets

Cxi, Ci2 and C^i, C22 corresponding to the fixed values of i = ] and
i = 2. The layer Li in the set C^, Cja is identical; also and
are only placed in a different order. The same holds for the set C21,
C22. Further, the Latin cubes and C22—i.e., the d.f., confounded
in them—are invariant under the transformation {BC), while the d.f.
confounded in C12 and C^x are seen to be identical on making the
transformation {BC). Lastly, the first (lowermost) rows in the Latin
cubes Cxz, C21 (7= 1) and C^, C22 {j= 2) are seen to be the same.

6. Latin Cubes of the Second Order in Relation to P.B.LB. Designs

We shall begin by stating the different combinatorial relation
ships satisfied by the parameters of the partially balanced incomplete
block designs with 'f' associate classes. In the usual notation, we
have.
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+ «2 + ''s + • • • + = V— 1

+ «2^2 + "3^3 + • • • + fifXt = r{k — 1)

== p'ylS

naP^Py = njiP^ay =« yP''a.^
t

E P^fiy = iifi — \ or np according as a = jS or a ^ ^
,7=1

'(30)
Consider now the (/c^, k^) lattice designs in blocks of k plots and

with four replications. In order to determine their relationship with
p.b.i.b. designs we shall consider the cases {A) k ^ s = a. prime number
or its power, and (B) k = non-prime, separately.

Case A.—k = s is a prime number or its power

We shall assume that in all cases the blocks of the fourth replica
tion are generated by superimposing on the s^ lattice scheme giving
the variety numbers an sxsxs Latin cube of the second order con
structed with the help of the usual theory of confounding for the
(j®, s^) designs. We have, seen is Section 4, that there are only {s —1)^
such possibilities of confounding of the type AB\ BC' {i, j — 2, ...,
J — 1) which lead to the construction of Latin cubes of the second
order of side i'. The {s ~ 1)^ Latin cubes of the second order thus
generated may now be divided into {s —1) groups Gi, G2, ..., Gj-j,
of (5 —1) Latin cubes each, corresponding to the fixed values of i = 1,
/ = 2, ^ —1 and j=\, 2,..., j —1, respectively. Now
from Theorems 2 and 3 proved in the last section we see that:

(0 The {s —1) Latin cubes of the second order in any group Gi
for a fixed value of i correspond only to a rearrangement of the layer
planes X3 = constant, i.e., only to a change in the names of the levels
of the quasi-factor c.

(ii) The groups Gi, G^, ..., are interrelated by the trans
formation (x2, X3), i.e., by a change in the name of the two quasi-factors
b and c.

•Hence we deduce that the (i — 1)^ possible Latin cubes of the
second order, generated by the general theory of confounding, are
all structurally identical and so it is sufiicient to consider the combi
natorial properties of only one of them.

We shall now consider the cases ^ = 3, 4, 5, 7, ... ; individually. ^
It is then found that the 3® lattice with four replications-—using any
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one of the (3 — 1)^ = 4 possible Latin cubes of the second order for
generating the blocks of the fourth replication-—is a p.b.i.b. design
with 3 associate classes. We assume that a Latin cube of the second

order, e.g., the one given in scheme (20) is superimposed on the lattice
scheme (19) giving the variety numbers. Then the association scheme
of any variety (xj, Xa, x^, occurring in the /--th row and c-th column
of the /-th layer and corresponding to the number of the Latin cube
is given by the following rules:

(a) First associates:

In the /-th layer —Varieties in the same row and column
as (;ci, Xa, X3).

In the other layers—Varieties at the position (/•, c) in the
layers, i.e., lying along the vertical
through (xi, Xa, Xg);

—Varieties in the positions occupied by
the number

{b) Second associates:

In the /-th layer —Varieties corresponding to the projec
tions of occurring in the remaining
layers on to the /-th layer.

In the other layers—Varieties corresponding to the projec
tions off in any layer on to the ;--th
row and c-th column in this layer.

(c) Third associates:

In the /-th layer —All varieties remaining after the first and
second associates are written down.

In the other layers—All varieties occurring in the two rows
and two columns determined by the
two first and two second associates in

this layer, excluding the first and second
associates;

—Varieties corresponding to the projection
of from all layers excluding the
/-th, on to this layer.

Thus, from the schemes (19) and (20), the three associate categories
of the variety (000) for the design specified by confounding the effects
given in (16) in the fourth replication are as follows:
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1st associates

2nd associates

3rd associates

100, 200, 010, 020, 001, 221, 002, 112

110, 220, 021, 201, 012, 102

120, 210, Oil,. 101, 111, 121, 211, 022,1
122, 202, 212, 222

119

(31)

The categories (31) are seen to be the same as those obtained by
Federer (1949).

The varieties forming the first associates occur together in a block
with (000). The other varieties do not occur together in a block with
(000). The parameters of the (3^ 3^) lattice with 4 rephcations are
then found to be as follows: ,

V =3^ = 27, b = 36, r = 4,

Ml = 8 ^2 = 6 "3 = 12

= 1 As = 0 A3 = 0

'133

•^2 = =

^ {p\p) =

k = 3

(32)

Consider next the 4® lattice with four replications, using any
one of the (4 — 1)^ = 9 possible Latin cubes of the second order for
generating the blocks in the 4-th replication. This is found to be a
p.b.i.b. design with four associate classes. Assume as before the Latin
cube of the second order selected for generating the design to be super
imposed on a 4x4x4 lattice scheme giving the variety numbers. The
first three associates of any variety (xj, X3) occurring in the /-th
layer are then given by the rules (a), {b), (c) given above, and, the fourth
associates are given by the following rule:
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{d) Fourth associates:

In the /-th layer —Nil

In the other layers—All varieties remaining in the layers
after excluding the 1st, 2nd and 3rd
associates in these layers.

As an example, consider the following 4x4x4 Latin cube of the second
order generated by confounding the effects:

AB, BC, AC, AB^C\ AB^C- (33)

in the fourth replication.

L, ^3

4 8 12 16 7 3 15 11 10 14 2 6 13 9 5 1

3 7 11 15 8 4 16 12 9 13 1 5 14 10 6 2

2 6 10 14 5 1 13 9 12 16 4 8 15 11 7 3

1 5 9 13 6 2 14 10 11 15 3 7 16 12 8 4

Superimposing the Latin cube (34) on a 4x4x4 lattice similar to
the 3x3x3 lattice scheme (19) giving the variety numbers, we find
on applying the rules (a), (b), (c), {d) given above that the different
associates of the variety (000) are as follows:

1stassociates: 010, 020, 030, 100, 200, 300, 001, 111, 002, 222, 003, 333.

2nd associates: 110, 220, 330, 011,101, 022, 202, 033, 303.

3rd associates: 120, 130, 210, 230, 310, 320, 021, 031, 121, 131, 201, 211,
221,301,311,331,012,032,102, 112, 122, 212, 232,'
302, 322, 332, 013, 023, 103, 113, 133, 203, 223, 233,
313, 323.

4th associates: 231, 321, 132, 312, 123,213.

The parameters of the (4^ 4^) lattice with four replications are
then found to be as follows:

V = 43 = 64, = 64, r = 4, jt = 4

«i =12, «2 = 9, "3 = 36, n4 = 6
Aj = 1, A2 = 0, A3 = 0, A4 = 0.

(34)

j

.
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Mi = O^a/s) =

2 3 6 0 \ / 4 0 8 0 \

3 0 6 0 0 4 0 4

6 6 18 6 1
M, = {p\p) =

8 0 28 0

0 0 6 0 / \ 0 4 0 2 /
2 2 6 2 \ / 0 0 12 0 \

2 0 7 0 0 6 0 3
M, ^ {p\p) =

6 7 18 4 : 12 0 24 0

2 0 4 0 / \ 0 3 0 2 /

now the 5® lattice designs with side j > 4, and using
any one of the {s — 1)^ possible Latin cubes of the second order for
generating the blocks of the fourth rephcation. It is found that these
designs also have four associate classes, but the parameters do not
satisfy all the relationships (30) which must hold in a p.b.i.b. design.
In particular, the relation

= npp^aY = (35)

for parameters of the second kind is violated for the matrices M^, M^,
M4 except for their first rows (or columns). All other relations, includ
ing (35) are satisfied for the matrix M-^ and the first rows of the matrices
Mj, Ms, Mi.

It will further be seen from the general solution for p.b.i.b. designs
with four associate classes and Ai=l, Ag = A3 = A4 = 0, presented
in the next section that it is only the elements of the first rows of the
matrices My (y = I, 2, 3, 4) that enter into the normal equations.
Hence it follows that this solution applies without change to the
(j®, j2) lattices with j > 4. Although some of the p.b.i.b. properties
do not hold for these designs the solutions are unaffected by virtue of
all A's excepting the first one being zero. We shall, therefore, give
below the general values of the parameters for the iXiXJ cubic lattice
designs with four replications. These are as follows:

V = j®, b = 4s^, r = 4, k = s

«i=4(j-l), //2 = 3(j-l), 713 = 6(j-l)(j-2),

= (j-l) (j-2)(j-3)

Ai = 1, Aj = 0, A3 = 0, A^ = 0
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Ml =

/is-2) 3 3{s-2) 0 . .\
3 0 3 (j - 2) 0

3 (^ - 2) 3 (>y - 2) 3 (j - 1)(j - 2) 3 (^ - 2) {s - 3)

\ 0 0 3(j-2)(j-3) (j-2)(j-3)(^-4)/

Matrix

M, ^ ip'ap)

M3 =

M, = ip'a^)

Elements of the first row

11 12

4 0

2 2

0 0

13

4(^-2)

2 (. - 1)

12

14

0

2 (^ - 3)

4 (j - 4)

. (37)

(38)

Case B.—k not a prime number or its power

In this case the theory of confounding is not available to us to
construct the kxkxk Latin cubes of the second order. Hence we

must resort to the general method of construction of Latin cubes of
the second order described in Section 3. It will, however, be seen
that there are too many arbitrary elements in this method and so, due
to the lack of any symmetry, these Latin cubes, when used to generate
the blocks of the fourth replication of the {k^, k^) lattices, do not in
general lead to p.b.i.b. designs.

Nevertheless it has been found that, even for this non-prime case,
Latin cubes of the second order of side k, of a particular type and con
structed by the general method, do lead to cubic lattice designs which
are amenable to solution by the general method presented in the next
section. In other words, just as for the prime-power case when k =
5 > 4, the designs thus obtained satisfy all the relationships between
the parameters of the first kind, and with regard to the parameters
p'̂ a.§ of second kind, they satisfy all relationships upto the matrix
Ml and the first rows of the matrices M2, M3, -M^.

In order to be able to construct suitable Latin cubes of the second
order of side k of the type described above, we must start with a cyclic
Latinsquare for the groups g^, ga, . ..,g„ of k numbers each as described
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at the end of Section 3. In addition, we must ensure that, as in Theorem
1 which holds for the prime case, the row and column contents in all
layers are kept constant. The {k^, k^) lattices thus generated have
four associate classes and satisfy all the necessary relationships.

The association scheme is governed by the same rules (a), {b),
(c), {d) as given in Case A above, and the parameters of these designs
are given exactly by the equations (36), (37) and (38) with k substituted
for s.

As an illustration, we give below a 6x6x6 Latin cube of the
second order generated in the manner described above.

Li L2 L, )

6 12 18 24 30 36 7 13 19 25 31 1 28 34 4 10 16 22

5 11 17 23 29 35 12 18 24 30 36 6 27 33 3 9 15 21

4 10 16 22 28 34 11 17 23 29 35 5 26 32 2 8 14 20

3 9 15 21 27 33 10 16 22 28 34 4 25 31 1 7 13 19

2 8 14 20 26 32 9 15 21 27 33 3 30 36 6 12 18 24

1 7 13 19 25 31 8 14 20 26 32 2 29 35 5 11 17 23.

L, Li Le

21 27 33 3 9 15 14 20 26 32 2 8 35 5 11 17 23 29

20 26 32 2 8 14 13 19 25 31 1 7 34 4 10 16 22 28

19 25 31 1 7 13 18 24 30 36 6 12 33 3 9 15 21 27 "

24 30 36 6 12 18 17 23 29 35 5 11 32 2 8 14 20 26,

23 29 35 5 11 17 16 22 28 34 4 10 31 1 7 13 19 25

22 28 34 4 10 16 15 21 27 33 3 9 36 6 12 18 24 30

(39)

It may readily be verified that the design obtained from (39)
satisfies all the relevant combinatorial properties.

Lastly, it may be remarked that for both the prime and non-prime
cases, the Latin cubes of the second order provide for the {k^, k^) lattices
not only a convenient key to the blocks of the design, but also a tactical
configuration for giving the association scheme of the varieties, which
as stated by Rao (1947) must be annexed to the p.b.i.b. designs
in general with equal A's.
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7. General Method of Solution for the (k^, k^) Lattices with
Four Replicates

We give below the general solution for the {k^, k^) 3-dimensional
lattice designs with four replicates. Whether A: is a prime or non-
prime, it is assumed that the fourth replication is generated in a suitable
manner as indicated in Section 6, so that the p.b.i.b. solution for designs
with four associate classes and any value of k apphes. The method
followed is similar to the one for designs with two and three associate
classes as given by Bose and Nair (1939) and Rao (1947).

A. The P.B.I.B. Solution.

Consider a p.b.i.b. design with four associate classes and para
meters ;

V b r ' k,

"l «2 «3 «4.

Aj = I Aa = 0 Ag = 0 = 0.

a, i3, y = 1, 2, 3, 4.

Let,

Q, = Sum of the yields for the i-th variety minus the sum of
the means of blocks in which it occurs,

Qj' = Sum of the means of blocks in which the /-th variety occurs
minus r times the grand mean m,

UQi, = Sum of the Q's for the 7-th associates of the /-th variety,
Vi = Estimate of the /-th variety effect, and

Sij = Sum of the varietal effects for. the y-th associates of the
j-th variety.

The Q-equations are then given by:

^Qi —r {k 1) Vj —AiiSji — A2>S'i2 — Agi'ig —
Hence, on eliminating Si^ by using the constraining relation
Svi = Vi + Sii + + Si3 -1- Sii = 0, the normal equations for the
intrablock solution are as follows;

^Qi = ^141'i + + DiiSis

k ^ 8il = ^24^( ~1" B24S41 + C24iS'j2 +

Qii = €3^8(2 +

k ^ Qi3 = + BiiSii + CiiSi2

(40)
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0 ^4! ^14 — ^4 ^14 — ^4 — ^2 —
Z)l4 = ^4 — A3 = 0.

^24 = (A4 - Ai) (Ml - ;?u4)

-®24 = /• (A: — 1) + A4 + (A4 — -Pn')
^24 = (^4- Ai)(p\i -Pii^)

•D24 = (^4- ^a)Oii® -Z'u^)

^34 = ~ (^^4 ~ ^•dPl2*

^34 = (K-^d(Pi^^Px2')

Q4 = /• (A: — 1) + A4 + (A4 — \) {Pl2^ ~ Pii^)

^34

^44 = ~ (^4 ~ \) Pl3*

^44 — (^4 (Pl3^ ~ Pl3^)

C44 = (A4 — Ai) {Pi2.^ —Pi3^)

^44 = r (A: — 1) + A4 + (A4 — ^1) iPl3^ -~ Pl3^)
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(41)

It may be noted that the normal equations (40) involve only the
Jirst rows of the matrices My(y = 1, 2, 3, 4). Solving these equations,
the varietal effects are then estimated from:

v.- =

fcQi

kEQn

14

!4

Cl4

C24

^4

^24
A (42)

where

kEQ,, -®34 C34

Ic2Q<3 Bii C44 D^i

Aii B,i Cl4 A4

A24 B,i C24 -©24

Aai Bai C'34 Dai

Aii Bii C44 Da

As, A3, /14. Then

A = (43)

Let the cofictors of ^14, A^^ and A^^ in A be denoted by A^,
. Then

_ (fcgi) A, + {kJJQi,) A, + (kEQ,^) A, + A,
Vi
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and the variances for the four associate classes and the mean variance

are given by:

and

n = — (^1 - ^2)A

2/ctr2

A

2k<y^

A

'.ka

V,= (^1 - ^3)

(^1 - ^4)

1

2ka^
F„ = [(v — 1) A-^—n^A^—niAs—n^A^

{y-\)A

where <7^ is the intra-block error variance.

(44)

(45)

The adjusted sum of squares due to varieties is, as usual, given
by SviQi, and the overall efficiency factor is given by:

E.F. = K, =
(V - 1) ^

/7c [(v — 1) Zli-ni/l2-"2^3-"3^4] '
(46)

As indicated by Rao (1947), the combined intra-and inter-block
solution is then obtained by making the substitutions \R, and
for r, Aj and Qi in the formulae for estimates of varietal effects and
variances derived above. The relationships to be used are:

H =r
w

w +
(k-l)

Af = Aj (w — w')

Pi = wQi + w'Qi'

B. Solution for the (k®, k^) lattices in four replicates.

We shall now derive the combined intra- and inter-rblock solution

for the cubic lattice designs in blocks of k plots and four replicates
by making use of the transformations (47). The parameters {see
Section 6) of these designs are as follows:

(47)
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V =k\ b = Ak\ /• = 4, k = k

«i=4(A:-l), n, = 3(k-\),

n, = 6 {k-\) ik-2), n, = {k-\) {k-2) (k-3)

= 1, ^2 ~ ^5 ^3 ~ ^4 ~ ^

Elements of the first row

11 12 13 14

P^afi . . (k-2) 3 3 ik-2) 0

4 0 4 {k-2) 0

2 2 2(k-l) 2 ik-3)

P\p 0 0 12 4 {k-4)
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(48)

(49)

Now, for brevity's sake, let us put

(/c — \)'w + w' = a ")

w — w' = b J

so that {a + b) —kw. Using (48) the transformations (47) then become:

i- i? (^ — 1) = 4 {(^ — 1) w + w'} = 4a

Af = A< (w — w') =

so that,

A^ = {w~ w') = b, A^ = 0, /I3 = 0, A^ = 0

(50)

Also, on substituting R and for r and Aj in (41), let the trans
formed values of A^, etc., be denoted by A'ij, etc. Using (48), (49)
and (50), the new coefficients of the normal equations are then as
follows:
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Hence

- 1) + ^4 = 4a, = /I, - = - b,

C'x4 = 0, D\, = 0,

= (/I4 - A,) [4{k- \)-0] = -A{k- \).b

= R(Jc-\)+ A^ + {A^~ yl,) p - 2) - 0]

= Aa-{k-2).b

C'24 = (^4 - A) [4 - 0] = -

D\, = (A, - A,) [2-0] =-2b

^'34 = - (^4 - A) [0] = 0

B',, = (A, - A,) [3-0] =-3b

C'34 = - 1) + ^4 + (^4 - ^1) [0 - 0] = 4a

D'34 = (^4 - A) [2 - 0] = - 2fe

^'44 = - C^4 - A) [12] = 12Z,

^'44 = (^4 - A) [3 (A: - 2) - 12] = -(3k- 18).b

C'44 = (^4 - A) [4 (k-1)- 12] = -(4/c- 20).b

D\^= J?(A: - 1) + ^4 + (^4 - A) [2{k-l)- 12]

= 4a - (2it - 14).Z>

A' =

A'li C'l4 D\,

A',i B'zi C'24 D\,

A'si B's, C'34 D'z,

A\, B\, C'44 D\,\
4a -b

-4{k-\)b 4a-{k-2)b

0 -3b

\2b - (3fc-18) -{4k-20)b 4a- {2k-14) b

Using the relation {a b) = kw, we derive from (52) the folloWihg
cofactors' of the elements in the first column:

A\ = Uw.[8a^ -6{k-4)ab + (A:^ - 10/t + 22)

A'^ = 8A:w.fc[2fl-(k-5) b]

A's = 8kw.2b^

A'^ = 8kw.b^

0

~4b

4a

1

0

-2b

-2b

(51)

• (52)

(53)
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Hence

A' = 32kw [8fl3 _ (6k - 24) a^b + {k^ - \2k + 24) ab^

+ {k^ - 6A: + 8) b^]

= 2>2kw [{(a + b)] {2a - {k - 2) b} {4a - (k - 4) 6}]

= 32kw [kw.k{w + w').k(2iw + w')]

= 4k*w.[(2iv + 2w') (3w + w') (4w)]

Replacing Qi by Pi and other symbols by primed ones in (42) and
(43) we obtain the solution:

(JcPd + (kUF,!) A', + (kl^Fi,) A', + (k2:F,,)A\
V / =

Substituting for a and b in terms of w and w' in (53), we then
obtain:

= 8A;w.[3 (k'+k+l) + (4k^-6) ww' + {k^-3k+y) w'̂ ]

= %kw.F-i^

A\~A'^ = ikw.[3k^+4k+4) w' + (4k'-8) ww' + (A:2-4A:+4) w'^]

= MW.F2

Ji'-J'i = Skw.[(3k^+4k+5) w' + (4/t2-10) ww' + {k^-4k+5) w'̂ ]

= Skw.Fs

J'l = %kw. [{3k^-\-4k+6) w^ + (4A:^—12) ww' + (k^—4k+6) w'̂ ]

= 8kw.Fi, say

The variances Vj for the differences (v/ — v/) between two varieties
which are 7-th associates (7= 1, 2, 3, 4) are then given by:

= l ^
' k^ - [(2w + 2)1'') (3w + w') (4w)]

By the method of partial fractions, we easily obtain from (56) and (57)
the results:

2
^1 =

F, =

1 r
k''

2

k^

3 3 (A:-2) {k^-3k + 3y
k^ l(2w + 2w') (3w + w') 4w

1 r 4 4{k-2) {k^ -4k + 4)1
k^ L(2w + 2w') (3>v + w') 4w

^ 5 2(2A:-5) (A:^ - 4A: + 5)1
^ k^i{2w + 2w') ^ (3w + w') ^ 4w

6 4 (A: - 3) (A;^ - 4A: + 6)
1(2^ + 2w') (3w + w') 4w

(54)

(55)

(56)

(57)

(58)
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Hence,

V„,=
6 _^4ik-2)

{k^ + k + \) L(2w + 2w') i3w + w')

(59)^ (k^ -3k+ 3)
4w

and the overall efficiency factor (with w' = 0) reduces to

_3{k^ + k+J) (go)
E.F.(,- = 4 replicates) =

It is well known that the efficiency factor of the cubic lattice with
3 replicates and w' = 0 is given by (Yates, 1939):

E.F. (;• = 3 repUcates) =

It is readily seen from (60) and (61) that

E.F. (/• = 4) > E.F. {r = 3) (62)

Hence, just as in the 2-dimensional lattices the efficiency is increased
on using a Latin square for obtaining additional replications, similarly
the use of a Latin cube of the second order increases the efficiency of
the cubic lattice designs.

It may'also be noted that the expression (59) for the mean variance
is in accord with .the general theory for prime-power designs {k —s)
as presented by Kempthorne (1952). This follows easily from the
fact that out of the (A:^ + /c + 1) sets of (^ — 1) d.f. for the comparisons
between the k^ varieties, 6 are confounded twice, 4(fc —2) are con
founded once only, and the remaining {k^ — 3k + 3) sets are uncon-
founded.

Lastly it may be remarked that with k = 3, there are only 3
associate classes in the design. Hence the solution may be carried
out with the formulse for 3 associate classes given by Rao (1947).
The parameters of the design are seen to be derivable from (48), (49)
by putting k = 3. For details of calculation see the numerical example
in Section 8. • On carrying through these steps, the expressions for
the variances Fi, V^, Fg, Vm and the E.F. are then found to be the same
as those given in (58), (59), and (60) on making the substitution k = 3.
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C. Analysis of variance for the (k^, k^) designs in four replicates.

The analysis of variance table is easily constructed as follows:

Table III

Analysis of variance

Source D.F. S.S. M.S. E(M.S.)

Replications .3 R

Varieties (ignoring blocks) V

Blocks within repUcations
(eliminating varieties)

A{k^-\) B

Intra-block error 3/c3_4/c2+1 (7^

Total .. Ak^~\ T

Here

cr^ — E (Intra-block error variance).

= E (Additional variance due. to the. variation among
the incomplete block means freed of varietal effects).

The sums of squares T, R and V are obtained as usual. The sum
of squares B for blocks (eliminating varieties) is obtained as follows:

We have,

S.S. blocks (ignoring varieties) + S.S. varieties (eliminating
blocks) •

= S.S. blocks (eliminating varieties) + S.S. varieties (ignoring
blocks).

Hence,

B = S.S. blocks within replications (ignoring varieties)
+ S - V. (63)

The error sum of squares and d.f. are obtained by subtraction. The
quantities and estimated by equating the mean squares in
the last two lines of Table III to their respective expectations, and
finally w and w' are estimated from the relations:

1
= n-2

IV
^ =(tM- /ccr^^. (64)
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8. Numerical Example: 3® Lattice with Four Rhplicatioks

As an illustration of the results discussed in the earlier sections

we shall rework out the example given by Federer (1949) by the methods
presented in this paper. He has used unifoimity trial data with corn
yield tests for 2x10 hill plots. Varieties are designated as usual by
the symbols (xj Xg) where Xi, Xj, -^3 = 0, 1,2 and the fourth replica
tion confounds the following effects:

RepUcationlV: AB\ AC, BC, ABC

as given in (16). The corresponding blocks are then given in (18) and
the 3x3x3 Latin cube of the second order thus generated in (20).
The field arrangement of the varieties is given in Table IV.

To carry out the analysis of variance for the design, we obtain
by the usual procedure the following values of sums of squares:

Total S.S..= 761-83.

RepUcates S.S. = 181*41.

S.S. blocks (ignoring varieties) = 604-84.

Hence,

S.S. blocks within replications (ignoring varieties)

= 604-84 - 181-41 = 423-43.

S.S. varieties (ignoring blocks) = V = 115-22.

In order to calculate the S.S. for blocks within replications (elimi
nating varieties) we now need the value of Using Rao's (1947)
notation for p.b.i.b. designs with 3 associate classes the necessary cal
culations are presented in Table V.

The parameters for the design are:

V =27, 6 = 36, /• = 4, k = 3

=8, «2 = 6, «3 = 12

Aj = 1, A2 = 0, A3 = 0

Ai = (w — w'), ^2 = 0> ^3 = 0

R =4
w'l

^ + -2. = 4w + 2w'.



Table IV

Field arrangement showing plot yields in pounds of ear corn for 3® lattice
(Variety numbsrs in parenthesis)

*<•)

Replicate I
-Block

Totals

1

T, , tt t BlockReplicate 11 1

1

Replicate III
B'ock

Totals
Replicate IV Block

Totals

(112) (111) (110)
30-6 32-0 30-3 92-9

(001) (Oil) (021)
33-0 34-4 33-1 100-5

(100) (200) (000)
30-2 31-3 30-6 92-1

(022) (210) (101)
31-3 29-9 30-8 92-0

{002) (000J (001)
29-9 31-6 32-5 94-0

(201) (221) (211)
31-0 29-2 29-7 89-9

(210) (010) (110)
26-5 30-4 31-8 88-7

fl22) (201) (010)
32-2 30-6 29-1 91-9

(210) (211) (212)
32-5 30-6 29-5 92-6

(120) Clio) flOO)
29-9 30-7 30-2 90-8

(002) (102) (202)
24-2 29-4 29-3 82-9

(020) (102) (211)
28-i 28-7 30-5 87-3

(120) (122) (121)
31-0 27-9 30-0 88-9

(102) (112) (122)
29-2 27-7 27-3 84-2

(020) (120) (220)
26-7 25-2 28-6 80-5

1121) (200) (012)
27-5 24-0 27-4 78-9

(100) (102) (101)
32-6 30-6 32-9 96-1

(202) (212) (222)
27-4 28-8 26-8 83-0

(201) (101) (001)
25-9 26-8 24-4 77-1

(112) (221) (000)
23-7 22-5 23-0 69-2

(Oil) (010) (012)
29-7 34-0 32-7 96-4

(020) (000) (010)
31-0 28-5 28-8 88-3

(12n (221) (021)
28-1 28-7 28-8 85-6

(120) (Oil) (202)
£8-9 26-3 25-8 si-o

(220) (221) (222)-
31-1 34-0 33-1 98-2

(012) (002) (022)
31-5 33-9 30-6 96-0

(212) (112) (012)
31-5 28-9 29-5 90-9

(001) (110) (222)
26-3 28-6 27-0 81-9

(020) (021) (022)
32-3 32-6 35-1 100-0

(101) (121) (111)
35-4 33-7 31-7 100-8

(322) (022) (222)
32-5 33-0 33-1 98-6

(111) (002) (220)
32-6 . 29-7 30-3 02-6

(202) (201) (200)
33-8 31-4 31-2 S6-4

(200) (210) (220)
33-1 29-3 31-2 93-6

(211) (Oil) (111)
31-6 29-3 30-8 91-7

(100) (021) (212)
29-9 31-8 28-1 89-8

Replicate total
Grand total

855-5
"

827-1

••

788-1

..

764-6
3236-3

X
cn

M
X

. m
w

I

O

o
2:
>
r

o

o
a
D3

o

r
>

o
til

o

s
o

u>



Table

Computations for the solution of the

Variety
lumbers

(V)

Unadjusted
totals

Ti
^<2i'=s^,i,-r/9

- "(1) (2) (3) (4) (5) (6) (7)

000 113-7 343-6 - 2-5 -15-87778 -21-0 + 17-3

:001 116-2 353-5 - 4-9 - 5-97778 - 1-1 + 14-1

002 117-'7 365-5 -12-4 + 6-02222 + 7-9 - 6-0

010 122-3 365-3 + 1-6 + 5-82222 . -18-6 + 4-3

oil " 119-7 369-6 -10-5 + 10-12222' + 19-2 - 1-8

012 121-1 362-2 + 1-1 + 2-72222 -20-5 - 6-8

020 118-1 356-1 - 1-8 - 3-37778 + 16-9 -38-9

021 • 126-3 375-9 + 3-0 + 16-42222 -12-5 + 18-1

02i2 130-0 386-6 + 3-4 +27-12222 -16-3 - 0-3

100 122-9 368-8 - 0-1 + 9-32222 + 24-3 -11-2

101 125-9 366-0 + 11-7 + 6-52222 - 2-3 + 0-1

102 117-9 350-5 + 3-2 - 8-97778 + 3-3 + 6-8

110 121-4 ?54-3 + 9-9 - 5-17778 -11-8 . - 9-1

111 - 127-1 378-0 + 3-3 + 18-52222 + 5-3 - 8-8

112 111-9 337-2 - 1-5 -22-27778 + 8-8 - 3 ,-2

120 115-0 341-2 + 3-8 -18-27778 + 1-6 + 7-2

121 119-3 354-2 + 3-7 - 5-27778 + 17-1 - 8-6

122 119-9 363-6 - 3-9 + 4-12222 - + 13-9 +26-8

aoo 119-6 361-0 - 2-2 + 1-52222 - 4-4 + 2-4

201 118-9 355-3 + 1-4 - 4-17778 + 13-9 -20-1

202 116-3 343-3 + 5-6 -16-17778 -21-0 - 3-4

210 118-2 366-9 -12-3 + 7-42222 + 26-2 + 2-2

211 122-4 361-5 + 5-7 + 2-02222 -19-0 + 19-1

212 117-9 356-3 - 2-6 - 3-17778 - 0-2 + 4-1

220 121-2 364-9 - 1-3 + 5-42222 -23-0 + 25-8

221 114-4 342-9 + 0-3 -16-57778 + 6-8 -12-1

222 120-0 361-7 - 1-7 +2-22222 + 6-5 -18-0

Totals .. 3235-3
(=7-)

9705-9
(=33-)

0 - 0-0000 0 0



V

3' lattice in four replicales

Vi kP, Vi'
Adjusted

means

m + Vi'

Federer's

values for

adjusted
means

(8) (9) (10) (11) (12) . (13) (14)

-0-6102 -2-121079 - 9-731671 + 6-908104 -0-909348 29-0471 29-0471

-0-6389 -2-272417 + 0-795788 + 7-351046 -0-672996 29-2835 29-2835

-1-5806 -4-165056 + 3-449291 - 2-628638 -1-246456 28-7100 28-7100

-0-0565 + 1-032162 - 7-241327 + 0-411399 + 0-136345 30-0928 30-0928

-1-1352 -3-150315 + 7-528846 - 1-807158 -0-809874 29-1466 29-1466;

-0-1880 + 0-613611 - 6-141969 - 1-449607 + 0-024721 29-9812 29-9812-

-0-1037 -0-923367 + 7-317279 -12-950654 -0-151327 29-8051 29-8051

+ 0-2704 + 2-348045 - 3-740816 + 5-189304 + 0-669728 30-6262 30-6262

+ 0-2093 + 3-299124 - 2-914013 - 1-023804 + 0-969618 30-9281 30-9261

+ 0-3269 + 0-661639 + 7-021104 - 7-593313 + 0-368284 30-3248 30-3247

+ 1-5537 + 4-844878 + 1-990828 + 1-906434 + 1-606410 31-5629 31-5629

+ 0-5065 + 0-518315 + 0-192366 + 2-841513 + 0-182182 30:1387 30-1386

+ 1-1343 + 3-297610 - 4-634715 - 2-853166 + 0-915368 30-8718 30-8718

+ 0-5028 + 2-617168 + 1-776610 - 6-249982 + 0-856581 30-8131 . 30-8130

-0-0778 -2-228574 + 1-445359 + 0-317994 -0-670573 29-2859 29-2839

+ 0-5630 + 0-044493 + 0-519046 + 5-344430 + 0-050175 '30-0066 30-0066

+ 0-7398 + 0-981848 + 7-489199 - 1-287603 + 0-508983 30-4655 30-4654

-0'2324 -1-142938 ,+ 3-389073 + 7-573685 -0-242217 29-7143 29-.7142

-0-3593 -0-704944 - 2-884261 - 0-580851 -0-304685 29-6518 29-6518

+ 0-3426 + 0-208021 + 3-771411 - 8-260417 + 0-133577 30-0900 30-0900

+ 0-4259 + 0-872067 - 8-922016 + 0-056114 + 0-038677 29-9951 29-9951

-1-2593 -4-022870 + 12-758835 + 2-710756 - 0-929017 29-0275 29-0275

+ 0-5398 + 2-273717 - 7-090376 t- 6-791080 + 0-562654 30-5191 30-5191

-0-3435 -1-206214 + 0-051319 + 2-128676 -0-374513 29-5820 29-5820

-0-4518 -0-077498 8-752006 + 8-603287 -0-224327 29-7321 29-7321

+ 0-1083 -1-131114 + 0-918164 - 3-632712 -0-351041 29-6054' 29-6054

-0-1861 -0-466316 + 1-638620 - 7-815941 -0-136932 29-8195 29-8195

0 -0-0000 - O-OOOO - 0-0090 -0-0000
•• ••
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Matrix
Elements of the first row

11 12 13

P\ . • • 1 3 3

P\ 4 0 4

P\ 2 2 4

Hence, by substituting the values of the parameters in the relations
given by Rao (1947, p. 553), we have

so that.

F

G

^13 Bi3 ^13 \ -1 0

^23 -623 Qs =( -6 9 -2

-^33 B33 C33 j \ 2 -1 10

= cofactor of =13

= cofactor of A23 = 10

H -= cofactor of A33 = 2

A = A^3F+A23G + A33H = 64^.

The unadjusted totals Tu the ^um of the block totals containing
the i-th variety = (,•), and the expressions kQ. = 3Ti—UBn), are
given in columns 2, 3, 4 of Table V.

The rules for determining the association scheme of the design
have already been stated in Section 6, whence we easily derive from
a table of first and second associates of each variety the expressions
S(kQi^ and E(kQi^ in columns 6 and 7 by summing the values in
column 4 over the first and second associates of the /-th variety but
excluding the /-th variety itself. The solution for is then given by:

Frnd + G{SkQ,^) + HiZkQ,^)
A

Vi =

_ 88 (col. 4) + 10 (col. 6) + 2 (col. 7)
648

and the values obtained are tabulated in column 8

and 8 we easily obtain

^(^20 V, = 100-19305

. From columns
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or

SviQ, = 33-40.

Hence, using (63),

S.S. blocks within replications (eliminating varieties)

= 423-43 + 33-40 - 115-22 = 341-61

as against tbe value 341-63 given by Federer. The small difference
is obviously due to rounding errors. The analysis of variance Table
VI of Federer is thus completely derived, and to estimate w and w' we
have the relations:

M.S. for blocks eliminating varieties (D.F. = 32)

= 10-676 = <72 + | . (3<7p2).

M.S. for Intra-block error (D.F. = 46) = 2.686 =

Hence,

w = 0-3723008

w' = 0-0749681.

To derive the combined solution, we then have

(8>v-)-4m'') —(iv—vv')

= I —6 {w—w') {9w+3w')

2(w—w') — (w—>v')

so that

F' = 88w2

—2 (w~w')

(10w+2)v')

52w' + 4w'2 = 13-6713304

G' = lOw^ - 8vf)v' - 2m''2 =, 1.1515530

H' = 2w^ — 4ww'2w'^ = 0-1768135
A' ^21 . (2w + 2w') (3w + w') (4w) = 42- 8692112.

The values of kQ '̂ = - km = - (r/9), where m is the
pneral mean 29-956481 and T is the grand total 3235-3, are given
in column 5. The values of = w(^gO + w'(A:^/) are then
tabulated in column 9 using the values of w and w' derived above on
columns 4 and 5.: The expressions S{kPn) and E{kPiz) are then
worked out as, before from the kPi values. The solution v/ is then
given by

, _ F' {kP,) + G'ZjkP,,) + H'S(kP,,)
i
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and is tabulated in column 12. The next column gives the adjusted
means m + v/ for all the 27 varieties and may be compared with
column 14 giving Federer's values for the same. It will be seen that
but for a small difference in the fourth decimal place in a few cases,
due to rounding errors, the columns 13 and 14 are identical.

Lastly, the variances for the three associate classes may^be derived
from, the following steps. We have

• f'-G' = 78w2 + 60ww' + = 12-5197774 .....

F'-//•'= 86vv2 + 56wiv'+ 2vv'2 == 13-4945169

F' = 88^2 + 52ww' + 4v/2 = 13-6713304.

Hence,

= 2k .

2
9 l2w + 2v/

(F' -G') 2 (78^2 + 60wh'' + 6w'^)
A' ~ 9 ' (2w + 2w') (3)f + w') (4vt')

= 1 -7523.
3>v + w' 4w_

Similarly,

= 1-8887

- i^ 1- i-"*
9 .2w + 2w' 3w + w' 4w

F' 2
+

.2w -h 2w 3w + vf' 4w.
= 1-9134

so that,

= 1 -324, • SEa = 1 -374, SE^=\-383.

Finally,

. ^ 8Fi + 6Ka+ I2K3
~~ 26

2^
13 _2w + 2w\ 3^+1/ 4w_

so that

Average = 1•363

= 1-8581



THE THREE-DIMENSIONAL OR CUBIC LATTICE DESIGNS 139

and

, £.F.=|?=-63-9%.
We also have

Randomised block error variance =5-96

Average effective error variance = (4/2) V,„ = 2F,„ =. 3•71.62; •

Hence,

S-Ofi
Actual efficiency = —— = 160-4%

' m

and

C.v. = = 6-4%
m

so that all the results are seen to be in complete agreement with those /
given by Federer. j
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